The deep biosphere is the part of the biosphere that resides below the first few meters of the land surface and seafloor. It extends below the continental surface and below the sea surface, at temperatures that may reach beyond which is comparable to the maximum temperature where a metabolically active organism has been found. It includes all three domains of life and the genetic diversity rivals that on the surface.
The first indications of deep life came from studies of oil fields in the 1920s, but it was not certain that the organisms were indigenous until methods were developed in the 1980s to prevent contamination from the surface. Samples are now collected in deep mines and scientific drilling programs in the ocean and on land. Deep observatories have been established for more extended studies.
Near the surface, living organisms consume organic matter and breathe oxygen. Lower down, these are not available, so they make use of "edibles" (electron donors) such as hydrogen (released from rocks by various chemical processes), methane (CH4), reduced sulfur compounds, and ammonium (NH4). They "breathe" electron acceptors such as and , manganese and , oxidized sulfur compounds and carbon dioxide (CO2). There is very little energy at greater depths, so metabolisms are up to a million times slower than at the surface. Cells may live for thousands of years before dividing and there is no known limit to their age.
The subsurface accounts for about 90% of the biomass across two domains of life, Archaea and Bacteria, and 15% of the total for the biosphere. Estimates in fact vary significantly depending on the samples and the measurement methods used, the "15 to 23 billion tons" figure is cited very often. Eukarya are also found, including some multicellular life - fungus and animals (, , , , and ). Viruses are also present and infect the microbes.
Also in the 1920s, Charles Lipman, a microbiologist at the University of California, Berkeley, noticed that bacteria that had been sealed in bottles for 40 years could be reanimated – a phenomenon now known as anhydrobiosis. He wondered whether the same was true of bacteria in coal seams. He sterilized samples of coal, wetted them, crushed them and then succeeded in culturing bacteria from the coal dust. One sterilization procedure, baking the coal at for up to 50 hours, actually encouraged their growth. He published the results in 1931.
The first studies of subsurface life were conducted by Claude E. Zobell, the "father of marine microbiology", in the late 1930s to the 1950s. Although the coring depth was limited, microbes were found wherever the sediments were sampled.
With increasing depth, Aerobic organism gave way to anaerobes.
Most biologists dismissed the subsurface microbes as contamination, especially after the submersible DSV Alvin sank in 1968 and the scientists escaped, leaving their lunches behind. When Alvin was recovered, the lunches showed no sign of microbial decay. This reinforced a view of the deep sea (and by extension the subsurface) as a lifeless desert. The study of the deep biosphere, like many bacteria, was dormant for decades; an exception is a group of Soviet microbiologists who began to refer to themselves as Geomicrobiology.
Interest in subsurface life was renewed when the United States Department of Energy was looking for a safe way of burying nuclear waste, and Frank J. Wobber realized that microbes below the surface could either help by degrading the buried waste or hinder by breaching the sealed containers. He formed the Subsurface Science Program to study deep life. To address the problem of contamination, special equipment was designed to minimize contact between a core sample and the drilling fluid that lubricates the drill bit. In addition, tracers were added to the fluid to indicate whether it penetrated the core. In 1987, several were drilled near the Savannah River Site, and microorganisms were found to be plentiful and diverse at least 500 metres below the surface.
From 1983 until now, microbiologists have analyzed cell abundances in drill cores from the International Ocean Discovery Program (originally the Ocean Drilling Program). A group led by John Parkes of the University of Bristol reported concentrations of 104 to 108 cells per gram of sediment down to depths of 500 metres (agricultural soils contain about 109 cells per gram). This was initially met with skepticism, and it took them four years to publish their results.
In 1992, Thomas Gold published a paper titled "The Deep, Hot Biosphere" suggesting that microbial life was widespread throughout the subsurface, existing in pore spaces between grains of rocks. He also published a book similarly titled The Deep Hot Biosphere. According to one paper, he "pioneered" the idea the hydrocarbons could sustain life to "known depths of 10km and possibly down to 300km", if the temperature was not over a hypothetical maximum of 150°C. Gold also suggested that the deep biosphere is sustained by hydrocarbons geologically produced by the subsurface, or their derivatives. According to the paper, Gold's proposals helped to inspire later generations of scientists.
In 1998, William Whitman and colleagues published a summary of twelve years of data in the Proceedings of the National Academy of Sciences. They estimated that up to 95% of all (archaea and bacteria) live in the deep subsurface, with 55% in the marine subsurface and 39% in the terrestrial subsurface. In 2002, Ocean Drilling Program Leg 201 was the first to be motivated by a search for deep life. Most of the previous exploration was on continental margins, so the goal was to drill in the open ocean for comparison. In 2016, International Ocean Discovery Program Leg 370 drilled into the marine sediment of the Nankai Trough Accretionary Prism and observed 102 vegetative cells per cm3 at 118 °C.
Deep underground mines, for example South African gold mines and the Pyhäsalmi copper and zinc mine in Finland, have also provided opportunities to sample the deep biosphere, as have chosen or proposed nuclear waste repository sites (e.g., Yucca Mountain and the Waste Isolation Pilot Plant in the United States, Äspö and surrounding areas in Sweden, Onkalo and surrounding areas in Finland, and Mont Terri in Switzerland). Scientific drilling of the continental deep subsurface has been promoted by the International Continental Scientific Drilling Program (ICDP).
To allow continuous underground sampling, various kinds of observatories have been developed. On the ocean floor, the Circulation Obviation Retrofit Kit (CORK) seals a borehole to cut off the influx of seawater. An advanced version of CORK is able to seal off multiple sections of a drill hole using "packers", rubber tubes that inflate to seal the space between the drill string and the wall of the borehole.
In sediments, the Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is designed to remain and take measurements after a borehole has collapsed. Packers are also used in the continental subsurface, along with devices such as the flow-through in situ reactor (FTISR). Various methods are used to extract fluids from these sites, including passive and Osmosis gas samplers and U-tube systems. In narrow (less than 50 mm) holes, polyamide tubes with a back-pressure valve can be lowered to sample an entire column of fluid.
The amount of energy that is released in a metabolic reaction depends on the redox potential of the chemicals involved. Electron donors have negative potentials. From highest to lowest redox potential, some common donors available in the subsurface are organic matter, hydrogen, methane, reduced sulfur compounds, reduced iron compounds and ammonium. From most negative to least, some acceptors are oxygen, and , manganese and iron oxides, oxidized sulfur compounds, and carbon dioxide.
Of electron donors, organic matter has the most negative redox potential. It can consist of deposits from regions where sunlight is available or produced by local organisms. Fresh material is more easily utilized than aged. Terrestrial organic matter (mainly from plants) is typically harder to process than marine (phytoplankton). Some organisms break down organic compounds using fermentation and hydrolysis, making it possible for others to convert it back to carbon dioxide. Hydrogen is a good energy source, but competition tends to make it scarce. It is particularly rich in hydrothermal fluids where it is produced by serpentinization. Multiple species can combine fermentation with methanogenesis and iron oxidation with hydrogen consumption. Methane is mostly found in marine sediments, in gaseous form (dissolved or free) or in methane hydrates. About 20% comes from abiotic sources (breakdown of organic matter or serpentinization) and 80% from biotic sources (which reduce organic compounds such as carbon dioxide, carbon monoxide and acetate). Over 90% of methane is oxidized by microbes before it reaches the surface; this activity is "one of the most important controls on greenhouse gas emissions and climate on Earth." Reduced sulfur compounds such as elemental sulfur, hydrogen sulfide (H2S) and pyrite (FeS2) are found in hydrothermal vents in basaltic crust, where they precipitate out when metal-rich fluids contact seawater. Reduced iron compounds in sediments are mainly deposited or produced by anaerobic reduction of .
The electron acceptor with the highest redox potential is oxygen. Produced by photosynthesis, it is transported to the ocean floor. There, it is quickly taken up if there is a lot of organic material, and may only be present in the top few centimeters. In organic-poor sediments it can be found at greater depths, even to the oceanic crust. Nitrate can be produced by degradation of organic matter or nitrogen fixation. Oxygen and nitrate are derived from photosynthesis, so underground communities that utilize them are not truly independent of the surface.
An increased pressure compresses , making Cell membrane less fluid. In most chemical reactions, the products occupy more volume than the reactants, so the reactions are inhibited by pressure. Nevertheless, some studies claim that cells from the surface are still active at a pressure of 1 gigapascal (GPa), about 10,000 times the standard atmospheric pressure. There are also for which optimal growth occurs at pressures over 100 MPa, and some do not grow in pressures less than 50 MPa.
As of 2019, most sampling of organisms from the deep ocean and subsurface undergo decompression when they are removed to the surface. This can harm the cells in a variety of ways, and experiments at surface pressures produce an inaccurate picture of microbial activity in the deep biosphere. A Pressurized Underwater Sampler Handler (PUSH50) has been developed to maintain in situ pressure during sampling and afterwards in the laboratory.
Microbes can survive at temperatures above 100 °C if the pressure is high enough to keep the water from boiling. The highest temperature at which an organism has been cultured in a laboratory is 122 °C, under pressures of 20 MPa and 40 MPa.
The record-setting thermophile, Methanopyrus, was isolated from a hydrothermal vent, which provide abundant energy and nutrients. Several groups of Archaea and Bacteria thrive in the shallow seafloor at temperatures between 80 °C and 105 °C. As the environment becomes more energy-limited, such as being deeper, bacteria can survive but their number decreases. Although microorganisms have been detected at temperatures up to 118 °C in cored sediments, attempts to isolate the organisms have failed. There can also be depth intervals with less cells than the deeper part of the location. Reasons for such 'low- or no-cell intervals' are still unknown but may be related to the underground flow of hot fluid. In deep Oil reservoir, no microbial activity has been seen hotter than 80 °C.
In the subsurface, cells catabolize (break down molecules for energy or building materials) 10,000 to one million times slower than at the surface. Biomass may take centuries or millennia to cell cycle. There is no known limit to the age that cells could reach. The viruses that are present could kill cells and there may be grazing by Eukaryote, but there is no evidence of that.
It is difficult to establish clear limits on the energy needed to keep cells alive but not growing. They need energy to perform certain basic functions like osmoregulation and maintenance of macromolecules such as and RNA (e.g., proofreading and synthesis). However, laboratory estimates of the energy needed are several orders of magnitude greater than the energy supply that appears to sustain life underground.
It was thought, at first, that most underground cells are Dormancy. However, some extra energy is required to come out of dormancy. This is not a good strategy in an environment where the energy sources are stable over millions of years but decreasing slowly. The available evidence suggests that most cells in the subsurface are active and viable.
A low-energy environment favors cells with minimal Homeostasis, because there are no changes in the environment that they need to respond to. There could be low-energy specialists. However, there is unlikely to be strong evolutionary pressure for such organisms to evolve because of the low turnover and because the environment is a dead end.
While the age of microbes in the subseafloor are still relatively unknown, there has been tremendous progress in the past few years to uncover this. For decades it was thought that life below the seafloor was dormant, at best. From core samples taken in 2010 and analyzed later in 2020, it was found that oxygen was found in cores from 100m below the ocean floor. When brought to a laboratory setting, it was found that these microbes were capable of growing and dividing after being dormant for potentially hundreds of thousands of years. The samples taken showed that 99.1% of the samples, all being from sediment deposited 101.5 million years ago, were alive and ready to eat. Samples in this study were taken on expedition 329 of “South Pacific Gyre Subseafloor Life,” of the Integrated Ocean Drilling Program.
Deep subseafloor microbial communities have very low turnover times because nutrient cycling is slow. Despite the slow rate of nutrient cycling, these communities can still contribute to the global biogeochemical cycle. With the very low metabolic rate, many cells may be dormant or working under energy-poor conditions. Commonly these cells are maintaining or repairing themselves, rather than reproducing. The age of subseafloor microbes was observed from samples taken part of the Ocean Drilling Program. While they are not completely dormant, microbes in the subseafloor sediment persist at extraordinarily slow rates of metabolic energy, estimated to be 3-6 orders of magnitude slower than in marine sediments and microbial cultures. The turnover time of microbial biomass in the subseafloor sediment is upwards of hundreds of thousands of years. This is much slower than per-cell activity of surface microbes. These microbes rely on buried organic matter that originated as seafloor sediment.
In the ocean, plankton species are distributed globally and are constantly being deposited almost everywhere. Quite different communities are found even in the top of ocean floor, and species diversity decreases with depth. However, there are still some taxa that are widespread in the subsurface. In , the main bacterial phyla are " Candidatus Atribacteria" (formerly OP9 and JS1), Pseudomonadota, Chloroflexota, and Planctomycetota. Members of Archaea were first identified using metagenomics, but some of them have since been cultured and acquired new names. The Deep Sea Archaeal Group (DSAG) became the Marine Benthic Group B (MBG-B) and is now a proposed phylum "Lokiarchaeota". Along with the former Ancient Archaeal Group (AAG) and Marine Hydrothermal Vent Group (MHVG), "Lokiarchaeota" is part of a candidate superphylum, Asgard. Other phyla are "Bathyarchaeota" (formerly the Miscellaneous Chrenarchaeotal Group), Nitrososphaerota (formerly Thaumarchaeota or Marine Group I), and Euryarchaeota (including "Hadesarchaea", Archaeoglobales and Thermococcales). A related clade, anaerobic methanotrophic archaea (ANME), is also represented. Other bacterial phyla include Thermotogota.
In the continental subsurface, the main bacterial groups are Pseudomonadota and Bacillota while the Archaea are mainly Methanomicrobia and Nitrososphaerota. Other phyla include "Bathyarchaeota" and "Aigarchaeota", while bacterial phyla include Aquificota and Nitrospirota.
The eukarya in the deep biosphere include some multicellular life. In 2009 a species of nematode, Halicephalobus mephisto, was discovered in rock fissures more than a kilometer down a South African gold mine. Nicknamed the "devil worm", it may have been forced down along with pore water by earthquakes. Other multicellular organisms have since been found, including fungus, Platyhelminthes (flatworms), Rotifera, Annelida (ringed worms) and Arthropoda. However, their range may be limited because , needed to construct membranes in eukarya, are not easily made in anaerobic conditions.
Viruses are also present in large numbers and infect a diverse range of microbes in the deep biosphere. They may contribute significantly to cell turnover and transfer of genetic information between cells.
Sediments form layers with different conditions for life. In the top 5–10 centimeters, animals burrow, Bioturbation and extending the sediment-water interface. The water carries oxygen, fresh organic matter and dissolved , resulting in a heterogenous environment with abundant nutrients. Below the burrowed layer is a layer dominated by sulfate reduction. Below that, the anaerobic reduction of methane is facilitated by sulfate in the sulfate-methane transition zone (SMTZ). Once the sulfates are depleted, methanogenesis takes over. The depth of the chemical zones depends on the rate that organic matter is deposited. Where it is rapid, oxygen is taken up rapidly as organic matter is consumed; where slow, oxygen can persist much deeper because of the lack of nutrients to oxidize.
Ocean sediment habitats can be divided into subduction zones, , and . At a subduction zone, where one plate is diving under another, a thick wedge of sediment tends to form. At first the sediment has 50 to 60 percent porosity; as it is compressed, fluids are expelled to form or gas hydrates.
Abyssal plains are the region between continental margins and mid-ocean ridges, usually at depths below . The ocean surface is very poor in nutrients such as nitrate, phosphate and iron, limiting the growth of phytoplankton; this results in low sedimentation rates. The sediment tends to be very poor in nutrients, so not all the oxygen is consumed; oxygen has been found all the way down to the underlying rock. In such environments, cells are mostly either obligate aerobe or facultative anaerobic (using oxygen where available but able to switch to other electron acceptors in its absence
Passive margins (continental shelves and slopes) are under relatively shallow water. Upwelling brings nutrient-rich water to the surface, stimulating abundant growth of phytoplankton, which then settle to the bottom (a phenomenon known as the biological pump). Thus, there is a lot of organic material in the sediments, and all the oxygen is used up in its consumption. They have very stable temperature and pressure profiles. The population of microbes is orders of magnitude greater than in the abyssal plains. It includes strict anaerobes including members of the Chloroflexi phylum, " Ca. Atribacteria", sulfate-reducing bacteria, and Fermentation, and in Archaea. Fungi are less diverse than in abyssal plains, mainly including Ascomycota and yeasts. Viruses in the Inoviridae, Siphoviridae, and Lipothrixviridae families have been identified.
Mid-ocean ridges are a hot, rapidly changing environment with a steep vertical temperature gradient, so life can only exist in the top few meters. High-temperature interactions between water and rock reduce sulfates, producing abundant sulfides that serve as energy sources; they also strip the rock of metals that can be sources of energy or toxic. Along with degassing from magma, water interactions also produce a lot of methane and hydrogen. No drilling has yet been accomplished here, so information on microbes comes from samples of hydrothermal fluids coming out of vents.
About off the ridge axis, when the crust is about 1 million years old, ridge flanks begin. Characterized by hydrothermal circulation, they extend to about 80 million years in age. This circulation is driven by latent heat from the cooling of crust, which heats seawater and drives it up through more permeable rock. Energy sources come from alteration of the rock, some of which is mediated by living organisms. In the younger crust, there is a lot of iron and sulfur cycling. Sediment cover slows the cooling and reduces the flow of water. There is little evidence of microbe activity in older (more than 10 million year old) crust.
Near subduction zones, volcanoes can form in and back-arc region regions. The subducting plate releases volatiles and solutes to these volcanoes, resulting in acidic fluids with higher concentrations of gases and metals than in the mid-ocean ridge. It also releases water that can mix with mantle material to form serpentinite. When hotspot volcanoes occur in the middle of oceanic plates, they create permeable and porous basalts with higher concentrations of gas than at mid-ocean ridges. Hydrothermal fluids are cooler and have a lower sulfide content. Iron-oxidizing bacteria create extensive deposits of Iron oxide.
Microbes have been found in sedimentary rocks down to about , the deepest sampled. There is a lot of diversity, although the deepest tend to be iron(III)- or sulfate-reducing bacteria that use fermentation and can thrive in high temperature and salinity. Even more salt-tolerant have been found in deep salt deposits, which are found all over the world. In 2019 microbial organisms were discovered living 2,400 meters below the surface, breathing sulfur and eating rocks such as pyrite as their regular food source. The discovery occurred in the oldest known water on Earth. A study of biosignatures in vein mineral samples from more than 30 deep mines in the Fennoscandian Shield proves that signatures of ancient life are omnipresent across the shield.
Humans have accessed deep aquifers in igneous rocks for a variety of purposes including groundwater extraction, mining, and storage of hazardous wastes. Most or all of these aquifers host microbes. At all the sites that have been tested, hydrogen, methane and carbon dioxide have been found. Hydrogen-based communities of Prokaryote have also been found in hot springs and hydrothermal systems. A variety of mechanisms have been proposed for the production of hydrogen, some of which would be independent of photosynthesis.
Other ecosystems have multiple interdependent species. They can be divided into , which derive energy from non-living sources, and , which feed on autotrophs or their remains. Some organisms engage in syntrophy, where one organism lives off the byproducts of another's metabolic activity. At the surface, most autotrophs use photosynthesis, but where there is no light, make use of chemical energy.
In where oxygen is available, a major group of chemoautotrophs is ammonia-oxidizing Nitrososphaerota archaea. It supports 19% of the heterotrophic production. In some environments such as Abyssal plain Pacific Ocean sediments, the supply of ammonia dwindles with depth; but in other environments ammonia actually increases because heterotrophic bacteria, living on organic material, remineralize the ammonia. This interdependence of the heterotrophic bacteria and Nitrososphaerota is an example of syntrophy. However, some Nitrososphaerota are , able to use both organic matter and carbon dioxide for carbon.
In anoxic sediments, hydrogen is an important "edible". Members of the Chloroflexia Bacterial phyla draw energy from it to produce acetate by reducing carbon dioxide or organic matter (a process known as acetogenesis). Metal-reducing and sugar-fermenting Bacteroidetes produce propionate, among other compounds, and this is fermented by " Ca. Atribacterota" to produce hydrogen. In upper sediments, sulfate-reducing bacteria take up most of the hydrogen, while in lower sediments the sulfate is depleted and methanogens dominate. In the sulfate-methane transition zone (SMTZ), anaerobic methanotrophic (ANME) archaea form consortia with sulfate-reducing bacteria.
Scientific methods
Sample collection
Field analysis and manipulation
Molecular methods and cultivation
Geochemical methods
Conditions for life
Energy sources
Here CH4 is the donor and O2 is the acceptor. Donors can be considered "edibles" and acceptors "breathables".
Nutrients
Pressure
Temperature
Living with energy limitation
Diversity
Habitats
Ocean floor
Sediments
Rocks
Porewater
Continents
Ecology
See also
Notes
Further reading
External links
|
|